Analysis of the ospC regulatory element controlled by the RpoN-RpoS regulatory pathway in Borrelia burgdorferi.
نویسندگان
چکیده
Outer surface lipoprotein C (OspC) is a key virulence factor of Borrelia burgdorferi. ospC is differentially regulated during borrelial transmission from ticks to rodents, and such regulation is essential for maintaining the spirochete in its natural enzootic cycle. Recently, we showed that the expression of ospC in B. burgdorferi is governed by a novel alternative sigma factor regulatory network, the RpoN-RpoS pathway. However, the precise mechanism by which the RpoN-RpoS pathway controls ospC expression has been unclear. In particular, there has been uncertainty regarding whether ospC is controlled directly by RpoS (sigma(s)) or indirectly through a transactivator (induced by RpoS). Using deletion analyses and genetic complementation in an OspC-deficient mutant of B. burgdorferi, we analyzed the cis element(s) required for the expression of ospC in its native borrelial background. Two highly conserved upstream inverted repeat elements, previously implicated in ospC regulation, were not required for ospC expression in B. burgdorferi. Using similar approaches, a minimal promoter that contained a canonical -35/-10 sequence necessary and sufficient for sigma(s)-dependent regulation of ospC was identified. Further, targeted mutagenesis of a C at position -15 within the extended -10 region of ospC, which is postulated to function like the strategic C residue important for Esigma(s) binding in Escherichia coli, abolished ospC expression. The minimal ospC promoter also was responsive to coumermycin A(1), further supporting its sigma(s) character. The combined data constitute a body of evidence that the RpoN-RpoS regulatory network controls ospC expression by direct binding of sigma(s) to a sigma(s)-dependent promoter of ospC. The implication of our findings to understanding how B. burgdorferi differentially regulates ospC and other ospC-like genes via the RpoN-RpoS regulatory pathway is discussed.
منابع مشابه
Regulation of expression of the paralogous Mlp family in Borrelia burgdorferi.
The Mlp (multicopy lipoproteins) family is one of many paralogous protein families in Borrelia burgdorferi. To examine the extent to which the 10 members of the Mlp family in B. burgdorferi strain 297 might be differentially regulated, antibodies specific for each of the Mlps were developed and used to analyze the protein expression profiles of individual Mlps when B. burgdorferi replicated und...
متن کاملExpression of Borrelia burgdorferi OspC and DbpA is controlled by a RpoN-RpoS regulatory pathway.
RpoS and RpoN are two alternative sigma factors typically associated with general stress responses in bacteria. To date, there has been no experimental evidence that RpoS and RpoN can directly control the expression of one another. Herein, using a combined strategy of gene disruption and genetic complementation targeting rpoN and rpoS in Borrelia burgdorferi strain 297, we describe a regulatory...
متن کاملRpoS Regulates Essential Virulence Factors Remaining to Be Identified in Borrelia burgdorferi
BACKGROUND Since the RpoN-RpoS regulatory network was revealed in the Lyme disease spirochete Borrelia burgdorferi a decade ago, both upstream and downstream of the pathway have been intensively investigated. While significant progress has been made into understanding of how the network is regulated, most notably, discovering a relationship of the network with Rrp2 and BosR, only three crucial ...
متن کاملSynthesis of RpoS Is Dependent on a Putative Enhancer Binding Protein Rrp2 in Borrelia burgdorferi
The RpoN-RpoS regulatory pathway plays a central role in governing adaptive changes by B. burgdorferi when the pathogen shuttles between its tick vector and mammalian hosts. In general, transcriptional activation of bacterial RpoN (σ54)-dependent genes requires an enhancer binding protein. B. burgdorferi encodes the putative enhancer binding protein Rrp2. Previous studies have revealed that the...
متن کاملRole of Acetyl-Phosphate in Activation of the Rrp2-RpoN-RpoS Pathway in Borrelia burgdorferi
Borrelia burgdorferi, the Lyme disease spirochete, dramatically alters its transcriptome and proteome as it cycles between the arthropod vector and mammalian host. During this enzootic cycle, a novel regulatory network, the Rrp2-RpoN-RpoS pathway (also known as the σ(54)-σ(S) sigma factor cascade), plays a central role in modulating the differential expression of more than 10% of all B. burgdor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 187 14 شماره
صفحات -
تاریخ انتشار 2005